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Abstract

Climate and weather can be predicted statistically via geospatial
Maximum Likelihood Estimates (MLE), as an alternative to run-
ning large ensembles of forward models. The MLE-based iterative
optimization procedure requires the solving of large-scale linear
systems that performs a Cholesky factorization on a symmetric
positive-definite covariance matrix—a demanding dense factoriza-
tion in terms of memory footprint and computation. We propose
a novel solution to this problem: at the mathematical level, we re-
duce the computational requirement by exploiting the data sparsity
structure of the matrix off-diagonal tiles by means of low-rank
approximations; and, at the programming-paradigm level, we inte-
grate PaRSEC, a dynamic, task-based runtime to reach unparalleled
levels of efficiency for solving extreme-scale linear algebra matrix
operations. The resulting solution leverages fine-grained computa-
tions to facilitate asynchronous execution while providing a flexible
data distribution to mitigate load imbalance. Performance results
are reported using 3D synthetic datasets up to 42M geospatial loca-
tions on 130, 000 cores, which represent a cornerstone toward fast
and accurate predictions of environmental applications.
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1 Introduction

Massive parallelism is the dominant force behind the increased ca-
pabilities of scientific computing. Given the structural constraints
on technology and hardware design, high-performance comput-
ing (HPC) architecture development, which is striving to satisfy
application needs and achieve new levels of performance, has to
deal with unprecedented increases in concurrency, non-uniform
hardware designs, and changing performance capabilities. In this
unfriendly landscape, application developers face unfamiliar chal-
lenges at all levels, from the increase in the number of nodes to the
highly complex architectural capabilities on each node, and from
the lack of portability between different architectures to a lack of
compatibility across different versions of the same hardware. Faced
with such daunting challenges, combining existing programming
paradigms (i.e., the so-called “MPI+X model”) often backfires. The
application programmer is exposed to the complexity of handling
the non-uniform system explicitly, while the composition of mul-
tiple programming paradigms encourages a static distribution of
the computation between different logical domains. As the systems
grow increasingly complex, static assumptions about synchrony,
deterministic scheduling, and predictable runtime of computation
and communication alike, no longer bear out; and even a minor
amount of system noise and small delays introduce significant slack
in large-scale synchronous applications [16, 28, 50].
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Consequently, it is becoming clear that to perform at extreme
scales a shift in the programming model paradigm built around
a far less synchronous approach is needed to help applications
meet these challenges. The task-based programming model has
proven to be both efficient and productive in this regard. In a task-
based programming environment, a vast amount of parallelism
is exposed through expressing the algorithm as a set of succes-
sive, fine-grain tasks (a set of instructions that access and modify
an explicit and bounded amount of data). A runtime system is
then responsible for scheduling these tasks while satisfying the
data dependencies between them. Such a runtime must adapt to
the changes in the amount of parallelism available in the appli-
cation, and map that parallelism onto the underlying hardware
resources under dynamic and hard-to-predict system conditions.
Task-based programming models associated with dynamic runtime
systems have been thoroughly studied and have demonstrated a
leap forward in performance and programmability for many sci-
entific computing fields—including application libraries built on
top of the usual dense [4, 13, 19, 24, 27] and sparse [33, 35, 37, 48]
linear algebra solvers with regular, arithmetic/memory-intense,
computational tasks.

At the same time, covariance matrix problems have generated
interest in the scientific community, thanks to the simplicity of
their inherent symmetric matrix structures. In particular, they arise
in models of choice for predicting climate and weather forecasting
(i-e., environmental applications) [47], evaluating basis functions
for electronic structure calculations (i.e., computational chemistry
applications) [41], and identifying habitable galaxies (i.e., compu-
tational astronomy applications) [36], for which worldwide HPC
supercomputing centers allocate a large number of their computing
cycles. The size of these covariance matrices may significantly grow
for very large input datasets and, therefore, make the arithmetic
complexity and memory footprint unbearable.

The fundamental idea then is to exploit the low-rank or data
sparsity structure by compressing the off-diagonal tiles of the dense
covariance matrix up to a specific application-dependent accuracy.
In particular, low-rank matrix computation, which represents a cru-
cial class of matrix algorithms for geospatial statistics, can benefit
from the same aforementioned task-based approaches or implemen-
tation. However, the properties of low-rank matrix computations
make the integration more challenging because the granularity of
tasks, in direct relationship to the rank of the data tile, varies due
to the inherent heterogenous rank distribution, thereby raising the
algorithmic load imbalance at the forefront. These elements present
novel and supplementary burdens on runtime scheduling and mo-
tivate the expansion of dataflow runtime framework capabilities.
This paper introduces the Lorapo library which demonstrates the
impact of synergic opportunities between low-rank matrix compu-
tations and task-based runtime systems, i.e., PaRSEC, for solving
the Maximum Likelihood Estimates (MLE) in the context of 3D
climate and weather prediction applications. The MLE-based iter-
ative optimization procedure requires the Cholesky factorization
of large-scale, dense-symmetric, positive-definite covariance matri-
ces, which is extremely demanding in terms of memory footprint
and computation. Among other compression data formats, the TLR
approach reduces the memory footprint and the computational
requirement by exploiting the data sparsity structure of the matrix
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off-diagonal tiles by means of low-rank approximations. Numerical
accuracy is ultimately preserved, just enough to maintain the statis-
tical model fidelity for the prediction phase. The PaRSEC dynamic
task-based runtime is then employed at the programming paradigm
level to reach unparalleled levels of efficiency while performing
extreme-scale linear algebra matrix operations toward solving en-
vironmental applications with up to 42M (Million) geospatial loca-
tions on 130, 000 cores. To the best of our knowledge, this work is
the first to highlight performance of large-scale, task-based, and
TLR Cholesky factorization for 3D scientific problems.

The remainder of this paper is as follows. Section 2 presents
related work and Section 3 highlights the paper contributions. Sec-
tion 4 describes the application and provides the necessary back-
ground for the TLR Cholesky factorization as well as the PaRSEC
dynamic runtime system. Section 5 introduces the design and the
novel implementations of the runtime optimizations to support TLR
computational workloads. Performance results and analysis of the
incremental optimizations are reported in Section 6. We conclude
and present future work in Section 7.

2 Related Work

Numerous efforts are ongoing to support fine-grain dataflow pro-
gramming. Recent task-based runtimes like Legion [14], StarPU [13],
Open Community Runtime (OCR) [26], OmpSs [27], and PaRSEC [20]
abstract the available resources to isolate application developers
from the underlying hardware complexity and simplify the writing
of massively parallel scientific applications.

QUARK, OmpSs, and StarPU provide a task insertion application
programming interface (API) and dynamically build the task-graph.
To interact with the runtime, the developer expresses sequential
loop nests containing asynchronous task insertion calls. A conse-
quence in distributed settings is that all of the participating pro-
cesses have to discover the entirety of the graph to infer communi-
cation before reducing to the set of local tasks. This pruning phase
limits potential scalability [32]. QUARK has no implicit support for
heterogeneous nor distributed architectures though. StarPU pro-
vides automatic support for heterogeneous architectures and covers
distributed execution via the insertion of implicit point-to-point
communication tasks [3], which may prevent the benefits of poten-
tial collective communication. OmpSs follows a master-slave model
where it allows nesting of tasks in individual nodes to relieve the
master; however the master-slave model may suffer from scalability
issues on distributed systems.

Recent versions of the OpenMP specification [40] introduce the
task and depend clauses which can be employed to express dataflow
graphs. OpenMP is widely used and supports homogeneous, shared-
memory systems, and its target extension to support accelerators
is quickly gaining traction. A limitation of the OpenMP model is
that distributed-memory and internode communication needs to
be described explicitly and performed with the use of an external
communication library (e.g., MPI, SHMEM). OCR, still in early devel-
opment stages, only supports homogeneous architectures. Legion
describes logical regions of data, uses those regions to express the
dataflow and dependencies between tasks, and defers the sched-
uling of tasks and data movement across distributed nodes to its
underlying runtime, REALM [49].
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On the applications side, climate and weather prediction applica-
tions that use geospatial statistics with MLE are prohibitively expen-
sive due to high arithmetic complexity and large memory footprint.
These applications necessitate direct matrix factorizations with
O(N?) operations on O(N?) data, where N is the problem size, to di-
rectly compute the log-determinant and the linear solve involved in
the MLE. This challenge prevents computational statisticians from
increasing the scale or the details at which these problems need to
be studied. Low-rank matrix operations may overcome this curse
of dimensionality by using accuracy-tuned approximate methods.
The mathematical theory behind low-rank matrix computations
has been around for more than two decades [51]. Recent theoreti-
cal advancements have drastically improved the upper bounds for
algorithmic complexity [11, 15].

In this context, there are several approaches to tackle the MLE,
for instance, by exploiting the assumption of independence be-
tween blocks in the covariance matrix [46], by relying on Kro-
necker and Toeplitz algebra [52], and by using kernel-independent
method [29]. All these aforementioned papers show performance
results on 2D problems, up to 80K matrix size, and on single shared-
memory node. While the former makes a strong assumption which
may represent unrealistic situations in some cases, the two re-
maining approaches can be further accelerated with Hierarchically
Semi-Separable (HSS) [54] and Hierarchical Off-Diagonal Low-Rank
(HODLR) compression data formats [7], respectively. However,
when solving 2D and 3D problems, these compression formats
may eventually be subject to a substantial increase of their original
arithmetic complexities, due to large off-diagonal ranks.

There are also methods which directly compute the matrix factor-
ization to service the MLE. Owing to their hierarchy and recursive
formulations, the first high-performance hierarchically low-rank
LU factorization (#{-LU) implementation on homogeneous, shared-
memory systems emerged only a few years ago [34], when more
suitable programming models to support recursion (e.g., Cilk [18]
and Intel Threading Building Blocks [44]) became available. Al-
though these language features enhanced the user productivity,
they may actually impede parallel performance because of the low
hardware occupancy achieved on massively parallel systems.

Recent implementations of hierarchical low-rank matrix compu-
tations have been developed using the flat single-program, multiple-

data (SPMD)/MPI programming model. This inherent bulk-synchronous

approach relies on the static 2D block cyclic data distribution
(2DBCDD) descriptor and maps the work onto resources with a
global ordering between algorithmic steps, which are separated by
global synchronous communication. Based on HSS compression
data format, STRUMPACK [45] may achieve log-linear arithmetic com-
plexity for problems with weak admissibility (i.e., typically 1D/2D
problem matrices characterized by off-diagonal blocks with rather
small ranks and homogeneous distributions). For 3D covariance
problems studied herein, STRUMPACK may face challenges in com-
pressing with HSS, since ranks may grow significantly, thereby
rendering computations intractable. In addition, the resulting large
discrepancy in the rank distribution may increase the communica-
tion volume due to the static 2DBCDD descriptor inherited from
ScalLAPACK [17]. Strong admissibility data compression formats,
such as block low-rank (BLR) [8, 43] and 742-like fast multipole
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method (FMM) [55] may better support the compression of 3D prob-
lems with a log-linear complexity for the latter. However, as imple-
mented in MUMPS [10], BLR may also suffer from over communicat-
ing and load imbalance due to the heterogeneous rank distributions
and the incapacity of the static 2DBCDD descriptor to address
it. This is perhaps the reason why the factorization of the dense
fronts are currently only performed on shared-memory systems
using the fork-join bulk synchronous paradigm from the OpenMP
programming model [9]. Matrix-free methods like FMM [30] have
demonstrated their effectiveness in performing task-based hierar-
chical compression of covariance-like matrices [55], but the class of
matrix factorization algorithms remains an open research problem.
Furthermore, previous work on task-based, TLR Cholesky factoriza-
tion in the context of HiCMA library [1, 2, 5], in which local tasks are
scheduled by StarPU task-based dynamic runtime, already high-
lighted performance bottlenecks for 2D problems. Indeed, due to
the static 2DBCDD descriptor—as well as the lack of support for col-
lective communications—the resulting implementation have shown
a distressing lack of scalability.

All in all, these low-rank matrix operations deal with heteroge-
neous workloads, which result in load imbalance during computa-
tions and communications. The bulk synchronous programming
model, along with the static 2DBCDD descriptor—on which the
dense linear algebra community has been relying for more than
two decades—lacks the necessary features to mitigate the load
imbalance. These challenges are further exacerbated when solv-
ing 3D problems due to a larger rank discrepancy among blocks.
Fine-grained computations with a flexible dynamic runtime sys-
tem become paramount when supporting such workloads at scale.
However, to fully address the load imbalance issue at the source,
a careful consideration of matrix data sparsity patterns should be
adopted. This requires decoupling the expression of the numerical
algorithm itself from its data mapping onto the system memory.
This separation of concerns turns out to be a key in scaling up
low-rank matrix computations on massively parallel systems.

3 Contributions

The challenges we are addressing in this paper are two-folds, at the
algorithmic and programming paradigm level, both arising from
the variability introduced by the low-rank approximations. More
precisely these challenges are: a need for irregular data distributions
to address the imbalance in memory consumption and in computa-
tional load, dynamic communication needs that must adapt to the
variable tile ranks, and a mismatch between the traditional load-
balancing and lookahead techniques and the needs of TLR Cholesky.
Prior efforts to implement TLR Cholesky have not addressed these
challenges and as a result they suffers from hard limitations on
the accessible problem size, a general lack of scalability with the
increasing size of the execution environment and an inability to ad-
dress domain science with a higher discrepancy in ranks resulting
from 3D problems.
The following innovations represent the core of our efforts and
the driving story of this paper:
(1) deploying the PaRSEC task-based runtime with its inherent
features (e.g., hybrid/flexible descriptor for data distribution)
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to mitigate the 2DBCDD overheads, while synergistically tack-
ling TLR matrix computations in the context of Lorapo;
(2) optimizing runtime execution via communication-reducing
and synchronization-reducing techniques;
(3) simulating matrix covariance kernels as proxy for environ-
mental applications based on geospatial statistics; and
(4) performing large-scale TLR Cholesky factorization up to 42M
geospatial locations on a distributed-memory system with up
to 130, 000 cores.
To the best of our knowledge, this is the first time a dense, TLR
Cholesky factorization has been deployed at this scale with an un-
precedented time-to-solution using large, 3D, synthetic datasets
generated from covariance matrix kernels used as proxy for geospa-
tial statistics. The TLR Cholesky factorization corresponds to the
most time-consuming operations when calculating the Maximum
Likelihood Estimates (MLE), and plays, therefore, a pivotal role
toward solving climate and weather prediction applications.

4 Background

This section provides detailed information on the geospatial sta-
tistics model used for climate and weather prediction applications,
recalls the TLR Cholesky factorization, and describes the PaRSEC
dynamic runtime system used in the paper.

4.1 Climate and Weather Prediction Model

The Gaussian process is one of the state-of-the-art models used for
climate and weather prediction applications. Physical properties
like temperature, wind speed, or soil moisture are assumed to be
random values following normal distributions with a given mean
and deviation. The behavior of these properties are observed at var-
ious spatial locations, and the main idea is to use these observations
and their corresponding Gaussian processes to predict missing field
values. This prediction phase defines the core of geospatial statistics.
The interactions between all pairwise spatial locations constitute
the basis for building the covariance matrix for the considered
property. This paper focuses on a representative covariance matrix
kernel: a square exponential function, usually called a “Gaussian
radial basis function:”
_ ey

fry=e @
where r(x,y) is the Euclidian distance from x to y, and [ > 0 is
the covariance length. The size of the resulting dense covariance
matrix is as large as the number of spatial locations, which can be
on the order of billions. If the covariance matrix can be generated,
statistical parameters have to be computed through the MLE:

L(0) = —%sz_l(G)z - %log 50), @)

where 6 corresponds to all covariance statistical parameters, z is
the actual vector of observations (e.g., temperature), and X(6) is the
covariance matrix itself. Covariance matrices, based on Gaussian
radial basis function, are symmetric and positive definite for any
values of 6, as long as all spatial points are distinct. In this paper, we
limit the list of parameters to a single one (i.e., the covariance length
I), and we set it to [ = 0.1 since it is used to represent a medium
relation, with all the spatial points belonging to unit square (2D) or
unit cube (3D). Parameter optimizations are beyond the scope of
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this paper and have been extensively studied [1]. In Equation (2),
the symmetric, positive-definite, covariance matrix is used in two
operations: (1) the linear solver and (2) the calculation of the de-
terminant. In this paper, we employ the Cholesky factorization
of the covariance matrix for both of these matrix operations: the
former needs the Cholesky factor for the forward and backward
substitutions, and the latter corresponds to the product of the di-
agonal entries of the Cholesky factor. Unfortunately, for a large
number of geospatial locations, the dense Cholesky factorization
is intractable due to the cubical algorithmic complexity, while the
memory footprint incommensurate with current systems. Low-rank
matrix approximation and computation become utterly critical to
alleviate both aforementioned bottlenecks.

4.2 Tile Low-Rank Cholesky Factorization

To better understand the TLR Cholesky factorization, we first briefly
revisit the classical tile algorithms for dense linear algebra [4]. The
matrix is first decomposed into dense tiles. The standard dense
Cholesky factorization usually operates on the underlying tile
data layout by subsequently calling the four computational kernels
POTRF (Cholesky factorization), TRSM (triangular solve), SYRK
(symmetric rank k update), and GEMM (general matrix multiply)
on the lower or upper part of the symmetric matrix. The whole
factorization translates into a directed acyclic graph (DAG), where
nodes correspond to tasks, and edges represent data dependencies.
The critical path of the DAG, which is the serial and incompressible
path, is (NT — 1) X (POTRF + TRSM + SYRK) + POTRF, where NT
is the number of row/column tiles, and the other four variables
are the execution time of the respective kernels. Unfortunately,
main memory becomes the limiting factor when dealing with large
matrix sizes for dense problems.

TLR approximations come to the rescue to address the curse
of dimensionality by exploiting the data sparsity structure of the
matrix operator. Reordering of rows/columns may be necessary to
further expose the low-rankness of the off-diagonal tiles, which can
then be approximated up to the application-dependent accuracy
threshold by using a variant of the singular value decomposition
(SVD), e.g., based on QR/divide-and-conquer algorithms [12] or
even a faster approach based on randomized techniques [31]. This
is the case for the square exponential covariance function studied
herein in Equation (1), thanks to its asymptotic smoothness [22, 51]:
the decay of singular values of the covariance matrix of any two sets

Figure 1: On the left, TLR format for matrix A having 4-by-4
tiles of size nb-by-nb. Diagonal tiles, D; ;, are stored as dense.
Off-diagonal tiles, A; ; = Uj jV; j, are compressed. Each off-
diagonal tile, A; j, has its own rank, k; j. On the right, the
corresponding DAG for Lorapo_POTRF on the same matrix.
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Algorithm 1 Lorapo_POTRF(D, U, V, NT, acc)

forp=1toNT do
POTRF(D(p.p))
fori=p+1toNT do
TRSM(V(i.,p), D(p.p))
forj=p+1toNT do
LR_SYRK(D(j.j), U(j.p). V(j.p))
fori=j+1toNTdo
LR_GEMM(U(i,p), V(i.p), U(j.p), V(j.p), UGi,j). V(ij), acc)

Table 1: Arithmetic Complexity: Dense vs. TLR Cholesky.

Kernel Dense Cholesky TLR Cholesky
POTRF 1 xnb? 1 x nbd
TRSM nb? nb? x k
SYRK/LR_SYRK nb® 2x nb? x k +4xnb x k?
GEMM/LR_GEMM 2x nb? 36 x nb x k?
Total O(N?) O(N?k)

of spatial locations depends only on the relation of distance between
these sets to the maximum of their diameters (a.k.a. admissibility
condition). To improve the ratio of distance to diameter and reduce
ranks, we have to cluster the spatial locations, corresponding to
consecutive rows or columns. For this purpose, we employ the
Morton ordering scheme [39], also known as the Z-order scheme.
This is not the only possible ordering method, Peano curve [42]
being another famous plane-filling curve.

The resulting TLR compression data format is shown in Figure 1
for a 4-by-4 matrix of tile size nb-by-nb. The diagonal tiles remain
dense, since the pairwise correlations may be stronger (rank k = nb)
than the cross correlations represented in the low-rank, off-diagonal
tiles (with k << nb for tiles farther away from the diagonal tiles).

TLR is the de facto compression data format for the HiCMA li-
brary [2, 5, 6]. To work on the compressed data layout of the off-
diagonal tiles, the HiCMA library mainly necessitates developments
of new low-rank LR_SYRK and LR_GEMM kernels, which requires
decompression and recompression phases respectively, as intro-
duced in [6]. To make the paper self-contained, we recall pseudo-
code of the sequential TLR Cholesky algorithm in Algorithm 1.

Although the data layouts are different between dense and TLR
Cholesky factorization, the DAG remains the same and so does
the length of the critical path. Let us assume L is the number of
tasks along the critical path, and D is all of the other operations
except L; this set of operations is almost embarrassingly parallel.
Therefore, the execution time will be the maximum between L and
D/C, with C being the number of computational resources. It should
be noted that, for the critical path, we ignore all cost related to data
movements as if this critical path executes on a single node; and for
the parallel part, we disregard all data dependencies as if all kernels
could be executed in parallel and, therefore, be perfectly scalable
with the number of computational resources.

Looking at the arithmetic complexity of individual tasks in Ta-
ble 1, we can derive the minimal operations count O(N?k) at-
tained when nb = O(VN). The detailed complexity analysis of TLR
Cholesky factorization can be found in [38]. It is also worth noting
both the three Level-3 BLAS kernels and their arithmetic complexi-
ties are redefined for TLR matrix computations (introduced in [6]),
creating severe situations of load imbalance for TLR Cholesky fac-
torization, which do not exist in the dense Cholesky factorization.
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4.3 The PaRSEC Runtime System

As a task-based runtime for distributed heterogeneous architectures,
PaRSEC [20] is capable of dynamically unfolding a description of a
graph of tasks on a set of resources and satisfying all data depen-
dencies by efficiently shepherding data between memory spaces
(between nodes but also between different memories on different
devices) and scheduling tasks across heterogeneous resources. The
overall PaRSEC programming model focuses on overcoming four
main barriers to algorithm scalability and efficiency:

(1) starvation, insufficient concurrent work available to maintain
high utilization of all resources;

(2) latency, the time-distance delay intrinsic to accessing remote
resources and services and delays due to oversubscribed
shared resources;

(3) overhead, the work required for the management of parallel
actions and resources on the critical path of execution, which
is not necessary in a sequential variant; and

(4) heterogeneity, support for specialized hardware to maximize
performance (accelerators) and minimize overheads (smart
communication hardware/NIC).

PaRSEC facilitates design of domain specific languages (DSL) [21]
that allow domain experts to focus on their science rather than on
the computer science. These DSLs rely on a dataflow model to
create dependencies between tasks and target the expression of
maximal parallelism.

The Parameterized Task Graph (PTG) [25] DSL uses a concise,
parameterized, task-graph description known as Job Data Flow
(JDF) to represent the dependencies between tasks. To enhance
the productivity of the application developers, PaRSEC implicitly
infers all communications from the expression of the tasks, sup-
porting one-to-many and many-to-many types of communications.
From a performance standpoint, algorithms described in PTG have
been shown capable of delivering a significant percentage of the
hardware peak performance on many hybrid distributed machines,
as highlighted in [25], where for instance DPLASMA, a dense linear
algebra (DLA) library using PaRSEC, yields superior performance
compared with the most widely used DLA library, ScaLAPACK [17]
or compared with state-of-the-art computational chemistry appli-
cations.Other DSLs, such as Dynamic Task Discovery (DTD) [32],
are less science-domain oriented and provide alternative program-
ming models to satisfy more generic needs by delivering an API
that allows for sequential task insertion into the runtime. This
programming model is simple and straightforward and has been
shown to deliver good performance on small and medium-sized
platforms. However, it suffers from the sequential discovery of tasks
that hinder its scalability, similar to StarPU and QUARK. Indeed, as
it stands from Algorithm 1, the TLR Cholesky may scale up to a
limited number of nodes if DTD programming model is employed
(see again [5]). The central idea is to empower Algorithm 1 with
the PTG as the driving engine for performance scalability.

5 Optimizations for TLR Algorithms

We optimize runtime performance based on three criteria: improv-
ing load balancing, limiting memory usage and shortening the
execution time of the critical path. The first two are addressed us-
ing a carefully designed data distribution, while the last one takes
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advantage of PaRSEC features conveniently exposed via the PTG
DSL that allows us to drive the execution of the algorithm following
a critical path. With the flexibility provided by the PaRSEC runtime,
we: (1) introduce a new hybrid data distribution to improve load bal-
ancing; (2) reduce communication volume to limit memory usage;
(3) leverage a new lookahead scheme to enforce critical path execu-
tion more aggressively to reduce waiting time in the critical path;
and (4) deploy dense, hierarchical POTRF (i.e., nested parallelism)
to reduce the critical path execution time.

5.1 Hybrid Data Distributions

Imbalance arises in TLR algorithms from two sources, related to
a single root cause: the rank disparities between tiles on and off
diagonal. The first source of imbalance is memory as the memory
needed to store compressed tiled is directly proportional to its
ranks (rank = nb), while the dense, diagonal tiles require nb * nb.
The second is the computational costs to apply operations on these
denser tiles, since denser tiles have a higher computational cost
(O(nb*)) compared with compressed tiles (O(nb?k)), as highlighted
in Table 1. Thus, the tiles closer to the diagonal pose two threats:
they require significant storage and impose a high computational
burden compared with the rest. It is therefore critical to ensure
a more even distribution of these dense tiles across all available
computational resources. Such a data distribution is unfamiliar in
today HPC world, where the highly regular 2D block cyclic data
distribution (2DBCDD), or ScaLAPACK 2D block cyclic, rules.

It is worth mentioning that 2DBCDD has been proven the op-
timal data distribution for most dense linear algebra operations,
including the dense Cholesky factorization. First, because all tiles
being equal, both the memory and computational burden is well
distributed across processes, and second because the simple map-
ping onto a 2D cartesian process grid leads to simpler code to
describe the communication patterns in today’s de facto program-
ming paradigm, MPI. However, in our case low rank tiles destroy
the balance of 2DBCDD and our supporting DSL can automatically
infer communications, so we are free to explore more suitable data
distribution patterns.

To mitigate the load imbalance of a 2DBCDD, we defined a new,
slightly less regular, data distribution scheme called “band distribu-
tion”. This “band distribution” allows us to more evenly distribute
the diagonal tiles across all participating processes, while falling
back to 2DBCDD for the remaining off-diagonal tiles. To the best

0 1/2(0/1/2(0[1 2 10127012012 of1]270 210/1]2]
3 4/5(3/4/5(3/4 5 13[1/5/3 4 53 4[5 (00123 4 5/3 4 5
6 7/8/6/7 8678 167|2/67 8678 161/2(37 8678
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3453 4[/5/345 13/453453]75 3453 45678
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(a) (b) (c)

Figure 2: (a) 2D block cyclic data distribution on a 3 X 3 pro-
cess grid; (b) Band distribution with size » = 1,anda 9 x 1
process grid over a 3 X 3 off-band process grid; (c) Band dis-
tribution with size b = 2, and a 9 X 1 process grid over a 3 X 3
off-band. Numbers represent process ID.
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of our knowledge, PaRSEC is the first task-based runtime that can
handle such hybrid data distribution to support data heterogeneous
workloads, as seen in low-rank matrix approximations. One can
visualize this data distribution as two intertwined 2DBCDD using
different process grids and superposed together, as shown in Fig-
ure 2 (b) and (c). In such data distribution, the diagonal and all tiles
up to a distance b from them will use a different process grid from
the rest of the tiles. As an example in Figure 2 (c), the band with
b = 2 uses a process grid of 9 X 1 while the rest of the matrix uses
a process grid of 3 x 3. Using this new band distribution, the load
imbalance challenge, both in memory and computations, can be
overcome by arranging tiles within band size b in a round-robin
fashion and tiles outside the band b in a normal 2DBCDD. The
band distribution can handle load imbalance issues in TLR Cholesky
along with other load imbalance issues which may be caused by
disproportionate time complexity (e.g., emerging from mixed pre-
cision calculations). It must be mentioned that such hybrid data
distributions for a single matrix object are not supported on any of
the dense linear algebra libraries available today, and certainly not
Scal APACK, the most widely available one.

5.2 Reduce Communication Volume

Since the computation intensity is much lower in TLR Cholesky
than in its dense counterpart, inter-node communication is bound
to play a critical role in the performance of the algorithm. Although
we define a maximum rank for the off-diagonal tiles, for the major-
ity of them, the actual rank during the execution is always lower
than this maximum rank and might vary during the factorization.
Using the constant maximum rank for all communications is entic-
ing, as it facilitates the algorithm coding and provides a portable
across runtimes and easy to implement solution. Unfortunately, this
simple approach leads to an increase in the volume of communica-
tions, as we are bound to always transfer more data than needed
(maxrank = nb instead of rank * nb per communication). This over-
head increases with the distance to the diagonal, reaching for low
ranks tiles orders of magnitude (%). We can approximate
the total reduction in communication volume by the maxrank di-
vided by the average rank across all non-diagonal tiles. Moreover, as
the algorithm communication needs increase rapidly as the matrix
grows, the maximum network bandwidth may be reached, and the
communications will then become one of the critical bottlenecks,
with a direct negative impact on the overall performance.

The PaRSEC runtime, used by the Lorapo library, provides mech-
anisms for sending variable sizes data to remote processes, even
when this size is dynamically decided by the task producing the cor-
responding data. This feature is unique in the task-based runtime
world, as most of the runtimes mentioned in related work are still
trying to cope with mostly regular, dense cases. Taking advantage of
this PaRSEC capability makes it possible to decrease data transfers
to only the actual tile data rank, therefore reaching communication
optimality. Such feature may alleviate the bandwidth saturation
and communication overhead, while releasing memory pressure
on the receiver side.

5.3 Lookahead to Emphasize the Critical Path

PaRSEC enables tasks as soon as all their dependencies are avail-
able, and can therefore enable maximum parallelization without
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the constraint of sequential code visibility, or window size, for task
insertion. This way, PaRSEC can maximize the number of potential
ready tasks, while agilely confronting the scheduling burden to
drive the execution in a way that minimizes the resource idleness
and global synchronizations. Even if the scheduler takes into ac-
count data locality, global and local constraints, and allows work
stealing within local computational resources, dealing with large
number of unordered tasks may become either a performance bot-
tleneck or a performance hazard. As explained in Section 4.2, task
priority for TLR Cholesky becomes paramount to aggressively fol-
low the critical path. The runtime may certainly also maximize the
performance of the parallel part, but may restrict the use of these
tasks as fill-in for the lack of parallelism in the critical path.

As a consequence, a delay in the critical path may have more
than a local impact, since it can propagate to remote processes
resulting on a significant disturbance, creating a cascading effect
of increasing delays, and therefore, a lower hardware occupancy
across the distributed resources. The PaRSEC concept of control
dependency between tasks can be used to guide the task execution
order and priorities, as its only purpose is to add empty depen-
dencies to delay tasks readiness. Taking advantage of this control
dependency, we extend the existing POTRF implementation by
adding novel lookahead techniques, different from the traditional
left- or right-looking in the classical dense Cholesky.

To prioritize tasks on the critical path, a control dependency
between LR_SYRK and TRSM of the same panel factorization is
used, delaying the discovery of parallelism outside the critical path
(corresponding to the update operation). More precisely, this con-
trol dependency applies to some TRSM operations (few rows away
from the current POTRF), and indirectly propagate to other oper-
ations (mainly LR_GEMM). For instance, the TRSM(m, k) kernels
(m represents the tile row index and k the panel factorization in-
dex) with the m > lookahead + k (lookahead defines the number of
TRSM operations delayed in each panel factorization) are delayed
by LR_SYRK(k, m) (m = k+1) until the corresponding POTRF(k+1)
is executed. By varying lookahead the critical path is unfolded at
the right pace, ensuring the prioritization of the critical path and a
higher hardware occupancy.

5.4 Hierarchical POTRF

Since the dense POTRF kernel on the diagonal dense tiles has a
computational intensity of at least an order of magnitude larger
than the other three Level-3 BLAS kernels (that are applied on
low-rank tiles), in addition to being located in the critical path of
the algorithm, we need to promote this kernel and execute it as
fast as possible in order to shorten the critical path and reduce the
POTRF execution time. Speeding up POTRF will also reduce the
waiting time for other cores by minimizing the potential starvation—
particularly at the end of the execution where the opportunities for
parallelism are lesser. Previous work in PaRSEC [53] introduced the
idea of hierarchical DAG scheduling for hybrid distributed systems,
where the task granularity is dynamically adjusted to adapt the
algorithm to the available computational resource on the node, and
to match their computational capabilities. In this paper, we extended
this idea to TLR Cholesky by hierarchically creating a node-local
task pool that decomposes the POTRF kernel on diagonal dense
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tiles into smaller subtiles to expose nested parallelism, and ensures
work is available for all computational resources. This approach
has the potential to improve core utilization (thus occupancy) and
reduce the cost of the critical path.

6 Performance Results and Analysis

The experiments are run on Shaheen II, a Cray XC40 system. which
has 6,174 compute nodes, each with two 16-core Intel Haswell
CPUs running at 2.30 GHz and 128 GB of DDR4 main memory.
All calculations are performed in double-precision floating-point
arithmetic. In all experiments, numerical backward errors have been
consistently validated against the application accuracy threshold
to ensure correctness. In particular, we compress off-diagonal tiles
and retain their most significant singular values (and associated
vectors) above the accuracy threshold of 1078, which ultimately
yields absolute numerical error of order 10~ in the solution of
linear system in Equation (2). This 107 tolerance is sufficient to
satisfy the prediction accuracy requirements of the 3D climate and
weather prediction applications, as described in [2]. We employ
a process grid P X Q across computational nodes and make it as
square as possible, otherwise suitable P and Q, where P < Q. We run
our experiments at least three times; since no major performance
variability has been noticed throughout our experiments, so the
minimum time to solution is reported. For the execution with the
largest number of cores, we make a single run to save on core
hours. It is worth noting that the most suitable tile size is used for
all experiments based on Section E in [23].

6.1 Application Settings

The numerical experiments use synthetic and realistic covariance
matrix kernels from three application settings:

(1) syn-2D: synthetic problem on a plane with the following co-
sin(Ar(x,y))

r(x,y)
to the imaginary part of the fundamental solution of the

Helmbholtz equation and is usually called the sinc function.
Although this function is not asymptotically smooth, it gives
good TLR matrix approximations with more-or-less equal
ranks of off-diagonal tiles. The parameter A is a wave num-
ber corresponding to the number of wave oscillations per
unit distance and is set to 100. We use this synthetic kernel
only to demonstrate the robustness of the proposed software
framework and for performance analysis.

(2) st-2D-sqexp: spatial statistics problem on a plane with a
square exponential covariance function, as introduced in Equa-
tion (1) from Section 4.1 in the context of climate and weather
prediction applications.

(3) st-3D-sqexp: spatial statistics problem in a 3D space with a
square exponential covariance function, which the 3D exten-
sion of the Equation (1) from Section 4.1.

variance function: f(x,y) = , which corresponds

The spatial locations for each application are generated as follows.
Given N, we find exact square (for problem on plane/2D space)
or cube (for problem in 3D space) number M not less than N. We
generate uniform distribution of M points in unit? or unit> domain.
We then sort all M points by the first coordinate—all points with
the same coordinate are sorted along the second axis, and then the
same happens along the third axis (for 3D space). We pick the first
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N points out of M sorted points. And finally, we apply the Z-order
sorting scheme for N picked points.

The generation of a TLR matrix consists of two phases: (1) genera-
tion on-the-fly and (2) compression. For each off-diagonal tile A; j of
a matrix A, a temporary dense matrix is generated and compressed
into Uj, j and V; j factors using randomized SVD [31], whereas the
diagonals are kept in dense format. The ratio of the time to gen-
erate and compress over the factorization time decreases due to
the difference in the asymptotic complexities of the two phases [5].
Thus, we only focus on reporting the time of the TLR Cholesky
factorization in the subsequent sections.

Furthermore, as opposed to syn-2D, the two statistics applica-
tions show more discrepancy (more than 2.8X in final average and
maximum ranks) in rank distribution. In other words, the ranks
in syn-2D are observed to be more homogeneous with respect
to the statistics applications. Among the statistics problems, the
difference between average and maximum ranks is the smallest for
st-2D-sqexp and the largest for st-3D-sqexp. Higher discrepancy
in ranks results in higher imbalance in computation and communica-
tion. Hence, sophisticated task and data distribution heuristics and a
dynamic runtime become important to efficiently solve such problems.

6.2 Comparison with HiCMA

We compare the performance of the proposed TLR Cholesky im-
plemented with Lorapo against HiCMA using syn-2D (Figure 3a)
and st-2D-sqexp (Figure 3b), the only two supported applications
with results reported in [5] using HiCMA. It should be noted that
the Lorapo version includes all optimizations noted in Section 5.
In these two figures, results up to 11M are given in Lorapo to com-
pare to HiCMA in compliance with Figure 8 of [5]. Some points are
missing from the figures owing to memory limitations. The Lorapo
implementation scales to much larger matrix sizes due to its better
memory management, hybrid data distribution and reduced commu-
nication volume, as described in Section 5, allowing the factorization
to be scaled up to a 32M matrix size on 512 nodes for st-2D-sqexp
(Figure 6). Moreover, Lorapo consistently outperforms HiCMA. In
fact, the performance of Lorapo on 64 nodes for both syn-2D
and st-2D-sqexp is better than any HiCMA configurations’ results.
When the matrix size is small, increasing the number of nodes does
not improve performance, because the time to solution is dominated
by the sequential critical path, L. However, as we increase the matrix
size (e.g., 10M), the balance between L and D, and the performance
improves, and a larger number of processors delivers better perfor-
mance. On the HiCMA side, the performance declines further for syn-
2D, and—as seen in Figure 3a—performance on 512 nodes is almost
the worst, highlighting a lack of scalability in their implementation.

6.3 Effect of Proposed Runtime Optimizations

In this section, we analyze in detail the impact of each one of four
optimizations described in Section 5 on one of the statistical applica-
tions, st-3D-sqexp. We are using the following abbreviations with
regard to the four optimizations: NONE for no optimizations, B
for Band distribution, BS for B and Sending actual rank during run-
time, BSL for BS and Lookahead to enforce critical path execution,
and BSLH for BSL and Hierarchical POTRF. All of these experi-
ments are run on 16, 32, 64, 128, and 256 nodes. In Section 6.3.5 we
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summarize all optimizations into a single consistent graph.

6.3.1 Hybrid Data Distributions. Figure 4a shows the effect of the
proposed load balancing technique for st-3D-sqexp when com-
pared to no optimization (NONE). A band size b = 1 is used in
band distribution to compensate for the imbalance occurring on
diagonal tiles due to rank discrepancies between tiles on and off
diagonals. Although diagonal tiles are on the critical path, fewer
tasks are applied on them at each iteration: a single POTRF and a
number of LR_SYRK (depending on the tile position in the matrix).
However, since diagonal tiles are full rank, the tasks on the diago-
nal tiles become more compute intensive than the rest of updates
(TRSM and LR_GEMM). In particular for the TLR Cholesky factor-
ization, a POTRF and a large number of LR_SYRK (one per tile
below the POTRF tile position) can be executed in parallel, leading
to a surge in compute intensive tasks (because they apply on full
dense tiles) that are all on the critical path. To alleviate the burden
of these time-consuming tasks from the critical path, we rely on
the band distribution to execute in parallel all these operations
across the maximum number of resources. This differs from the
traditional 2DBCDD in Figure 2a, for which diagonal tiles are only
spread across a subset of diagonal processes in the process grid
distribution. The data from the off-diagonal tiles, on which tasks
outside of the critical path operate on, are still distributed using
the traditional 2DBCDD. All in all, the resulting hybrid data distri-
bution, i.e., band distribution combined with 2DBCDD, is utterly
important to scale on massively parallel systems.

6.3.2  Reduce Communication Volume. PaRSEC can handle dynam-
ically sized data, providing Lorapo with the opportunity to only
send the necessary data (rank = nb instead of maxrank * nb). This
not only decrease the communication volume and thus overhead,
but also significantly reduce memory usage on the receiver, because
the receive buffer can now be tightly allocated with the real rank
instead of maxrank. The volume reduction being data dependent
(on rank) it is difficult to estimate it accurately. Considering the
exact same case as above, 3.24M matrix size on 256 nodes as an
example, BS reduced the data transfer volume by % = 12.3%.
As indicated in Figure 4b, the decrease in required memory on the
receiver side allows for solving significantly larger problems (up to
10M instead of only 6M), while providing the means to reduce the
time to solution by about 25% using the same matrix size from the
previous approach.

6.3.3 Lookahead to Emphasize the Critical Path. Figure 4c reveals
the impact of the proposed lookahead technique, BSL, compared
to BS for st-3D-sqexp. Smaller lookahead, more constraint added
to runtime to limit the potential parallelism. In practice the higher
discrepancies between tiles on and off diagonal, smaller number
of resources and bigger the problem size, the smaller lookahead
should be. Hence, several lookaheads are experimented and the best
time-to-solution is reported. In this figure, we can see the benefit
of lookahead grows with the matrix size, but decreases with the
number of nodes. The reason behind is that the lookahead hints
provided to the runtime and used to prioritize the critical path
executions are more impactful when there is an abundance of work,
so when the matrix increases over a fixed number of resource or
the number of resources decreases for the same problem size.
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Figure 3: Performance comparison of the proposed TLR Cholesky framework with Lorapo and HiCMA for the 2D kernels.
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Figure 4: The incremental effect of the proposed optimizations for st-3D-sqexp. The bottom figures represent the respective

resulting improvement as a percentage.

6.3.4 Hierarchical POTRF. Hierarchical POTRF creates a node-
local taskpool that decomposes the diagonal tile into smaller sub-
tiles and promote nested parallelism. This nested parallelism can
then be executed on more local cores to speed up execution time of
POTRF and reduce the critical path. Figure 4d depicts the efficiency
of hierarchical POTRF BSLH compared to BSL for st-3D-sqexp.
When scaling the matrix size up to the available memory limit, the
performance improves almost by one-third. Because of the inherent
characteristics of TLR Cholesky,the optimal tile size increases as the
matrix size increases. This leads to the undesirable increase in the
critical path, as larger tile size increases the execution time of ker-
nels on dense tiles (POTRF and SYRK), which translates into longer
critical path’s time to solution. The use of hierarchical POTRF will
increase the available parallelism and substantially cut down on the
critical path execution time, leading to the significant improvement
we are witnessing for larger matrix sizes.

6.3.5 Overall Effect of Proposed Optimizations. Figure 5 shows the
effect of enabling all proposed optimizations compared to initial
results without optimization for st-3D-sqexp, which gives us the
whole picture. In this figure, both performance and memory foot-
print improve substantially, which create opportunities for large-
scale experiments.

6.4 Extreme-Scale Runs

Figure 6 presents the extreme-scale results with matrix sizes up to
42M geospatial locations and using 16, 32, 64, 128, 256, 1024 and
4096 nodes for st-3D-sqexp with tile size 10000, 10000, 10000, 9000,
10000, 10800 and 10800 respectively, and 16, 32, 64, 128, 256, 512
and 1024 nodes for st-2D-sqexp with tile size 9000, 7200, 9000,
9000, 9000, 9000 and 10800 respectively. Each point in the plot cor-
responds to the factorization time for the largest matrix that can be
factorized on a specific number of nodes according to the memory
available on all the nodes involved. This setting may seem like a
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Figure 5: The effect of enabling all proposed optimization
techniques for st-3D-sqexp.

weak scalability experiment, but in low-rank approximation weak
scaling experiments result in a change of the ranks of tiles, and
therefore, the number of operations and the memory necessary to
store the low-rank matrix. In this figure, each point is associated
with three properties: (1) number of nodes, (2) matrix size, and
(3) execution time, which shows the performance and scalability
for a certain number of nodes. For st-2D-sqexp, it can go up to a
32M matrix size on 512 nodes, almost 10X larger than previously
reported with HiCMA, and up to 42M matrix size on 1,024 nodes
using 32,000 cores. For st-3D-sqexp, which requires even more
memory and computation (due to higher ranks and more rank dis-
parity as we move further away from the diagonal), the results are
presented up to 42M geospatial locations on 4, 096 nodes with a
total of 130, 000 cores. These particular matrix sizes are appealing
target for computational statisticians as this scale represents realis-
tic workload datasets, but could not have been reached before. It
should be noticed that in the presented setting the extreme-scale ex-
periment has taken nearly 24 hours to complete. To put this elapsed
time into perspective, let us compare against a dense Cholesky
factorization on the same matrix size and number of nodes. The
most time-consuming kernel is GEMM, running in a distributed
setting at 80% of the theoretical peak performance. For the con-
sidered system, the sustained performance according to Top500 is
3.7 PFLOP/s on 4,096 nodes. Given that the number of FLOPs for a
dense Cholesky factorization is 1/3 N, it would have taken approx-
imately 77 days to compute the dense Cholesky factorization on a
42M matrix size, as opposed to slightly less than a single day for
TLR Cholesky factorization, with the same, 1072, order threshold of
the solution.
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Figure 6: The performance results for the largest matrices
that fit in memory for st-2D-sqexp and st-3D-sqexp.
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7 Conclusion and Future Work

This paper presents the process to accommodate a heterogeneous
workload from low-rank matrix computations over a task-based
runtime, PaRSEC. In particular, we demonstrated that using the
TLR compression data format together with four algorithmic im-
provements supported by a nimble task-based runtime, the TLR
Cholesky factorization—which is the most time-consuming com-
putational phase of the geospatial statistics approach for environ-
mental applications—can be leveraged at an unprecedented scale.
In addition to analyzing the setup in the context of a 2D statistical
applications, we have highlighted the effectiveness and scalability
of TLR Cholesky factorization on a 3D covariance matrix kernel at
scales never reached before, 42M matrix size using 130, 000 cores.
We believe the impact of these features goes well beyond the TLR
compression data format for dense problems and may be directly
applied to sparse direct solvers [10]. For future work, we plan to col-
laborate with domain scientists and compare our solution against
first principles physics approaches using real 3D datasets. We would
also investigate mixed precision techniques with TLR Cholesky (e.g.,
FP64, FP32, and FP16) by leveraging the data sparsity patterns for
tiles located near, mid, and far from the diagonal. This would open
new opportunities on GPUs for further performance gain.
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